博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
pandas_1
阅读量:5244 次
发布时间:2019-06-14

本文共 25255 字,大约阅读时间需要 84 分钟。

大熊猫10分钟

这是对熊猫的简短介绍,主要面向新用户。您可以在看到更复杂的。

通常,我们导入如下:

In [1]: import numpy as npIn [2]: import pandas as pd

对象创建

请参阅。

创建一个通过传递值的列表,让大熊猫创建一个默认的整数索引:

In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8]) In [4]: s Out[4]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64

通过传递带有日期时间索引和标记列的NumPy数组来创建:

In [5]: dates = pd.date_range('20130101', periods=6) In [6]: dates Out[6]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) In [8]: df Out[8]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

DataFrame通过传递可以转换为类似系列的对象的dict来创建。

In [9]: df2 = pd.DataFrame({ 'A': 1., ...: 'B': pd.Timestamp('20130102'), ...: 'C': pd.Series(1, index=list(range(4)), dtype='float32'), ...: 'D': np.array([3] * 4, dtype='int32'), ...: 'E': pd.Categorical(["test", "train", "test", "train"]), ...: 'F': 'foo'}) ...: In [10]: df2 Out[10]: A B C D E F 0 1.0 2013-01-02 1.0 3 test foo 1 1.0 2013-01-02 1.0 3 train foo 2 1.0 2013-01-02 1.0 3 test foo 3 1.0 2013-01-02 1.0 3 train foo

结果的列DataFrame具有不同的 。

In [11]: df2.dtypesOut[11]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object

如果您正在使用IPython,则会自动启用列名称(以及公共属性)的选项卡完成。以下是将要完成的属性的子集:

In [12]: df2.
# noqa: E225, E999 df2.A df2.bool df2.abs df2.boxplot df2.add df2.C df2.add_prefix df2.clip df2.add_suffix df2.clip_lower df2.align df2.clip_upper df2.all df2.columns df2.any df2.combine df2.append df2.combine_first df2.apply df2.compound df2.applymap df2.consolidate df2.D

正如你所看到的,列ABC,和D自动标签完成。E也有; 为简洁起见,其他属性已被截断。

查看数据

请参阅“ 。

以下是查看框架的顶行和底行的方法:

In [13]: df.head()Out[13]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [14]: df.tail(3) Out[14]: A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

显示索引,列:

In [15]: df.indexOut[15]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [16]: df.columns Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')

给出基础数据的NumPy表示。请注意,当您拥有不同数据类型的列时,他的操作可能很昂贵,这可归结为pandas和NumPy之间的根本差异:NumPy数组对整个数组有一个dtype,而pandas DataFrames每列有一个dtype。当你打电话时 ,pandas会找到可以容纳 DataFrame中所有 dtypes 的NumPy dtype。这可能最终成为object,这需要将每个值都转换为Python对象。

因为df,我们的所有浮点值 都很快,不需要复制数据。

In [17]: df.to_numpy()Out[17]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]])

因为df2,具有多个dtypes, 相对昂贵。

In [18]: df2.to_numpy()Out[18]: array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)

注意

 

没有包括在输出的索引或列标签。

 显示数据的快速统计摘要:

In [19]: df.describe()Out[19]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804

转置您的数据:

In [20]: df.TOut[20]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

按轴排序:

In [21]: df.sort_index(axis=1, ascending=False) Out[21]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690

按值排序:

In [22]: df.sort_values(by='B') Out[22]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401

选择

注意

 

虽然标准的Python / numpy的表达式选择和设置直观,派上用场的互动工作,为生产代码,我们建议优化的熊猫数据访问方法,.at.iat, .loc.iloc

请参阅索引文档以及。

获得

选择一个列,产生一个Series,相当于df.A

In [23]: df['A']Out[23]: 2013-01-01 0.469112 2013-01-02 1.212112 2013-01-03 -0.861849 2013-01-04 0.721555 2013-01-05 -0.424972 2013-01-06 -0.673690 Freq: D, Name: A, dtype: float64

选择via [],对行进行切片。

In [24]: df[0:3] Out[24]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['20130102':'20130104'] Out[25]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

按标签选择

在查看更多信息。

使用标签获取横截面:

In [26]: df.loc[dates[0]] Out[26]: A 0.469112 B -0.282863 C -1.509059 D -1.135632 Name: 2013-01-01 00:00:00, dtype: float64

按标签选择多轴:

In [27]: df.loc[:, ['A', 'B']] Out[27]: A B 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648

显示标签切片,两个端点包括

In [28]: df.loc['20130102':'20130104', ['A', 'B']] Out[28]: A B 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771

减少返回对象的尺寸:

In [29]: df.loc['20130102', ['A', 'B']] Out[29]: A 1.212112 B -0.173215 Name: 2013-01-02 00:00:00, dtype: float64

获取标量值:

In [30]: df.loc[dates[0], 'A'] Out[30]: 0.46911229990718628

为了快速访问标量(相当于以前的方法):

In [31]: df.at[dates[0], 'A'] Out[31]: 0.46911229990718628

按位置选择

在查看更多信息。

通过传递的整数的位置选择:

In [32]: df.iloc[3] Out[32]: A 0.721555 B -0.706771 C -1.039575 D 0.271860 Name: 2013-01-04 00:00:00, dtype: float64

通过整数切片,类似于numpy / python:

In [33]: df.iloc[3:5, 0:2] Out[33]: A B 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020

通过整数位置位置列表,类似于numpy / python样式:

In [34]: df.iloc[[1, 2, 4], [0, 2]] Out[34]: A C 2013-01-02 1.212112 0.119209 2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232

对于明确切片行:

In [35]: df.iloc[1:3, :] Out[35]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

对于明确切片列:

In [36]: df.iloc[:, 1:3] Out[36]: B C 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427

为了明确获取值:

In [37]: df.iloc[1, 1] Out[37]: -0.17321464905330858

为了快速访问标量(相当于以前的方法):

In [38]: df.iat[1, 1] Out[38]: -0.17321464905330858

布尔索引

使用单个列的值来选择数据。

In [39]: df[df.A > 0] Out[39]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

从满足布尔条件的DataFrame中选择值。

In [40]: df[df > 0] Out[40]: A B C D 2013-01-01 0.469112 NaN NaN NaN 2013-01-02 1.212112 NaN 0.119209 NaN 2013-01-03 NaN NaN NaN 1.071804 2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988

使用过滤方法:

In [41]: df2 = df.copy() In [42]: df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three'] In [43]: df2 Out[43]: A B C D E 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2['E'].isin(['two', 'four'])] Out[44]: A B C D E 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

设定

设置新列会自动根据索引对齐数据。

In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6)) In [46]: s1 Out[46]: 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64 In [47]: df['F'] = s1

按标签设置值:

In [48]: df.at[dates[0], 'A'] = 0

按位置设置值:

In [49]: df.iat[0, 1] = 0

通过使用NumPy数组进行设置:

In [50]: df.loc[:, 'D'] = np.array([5] * len(df))

先前设置操作的结果。

In [51]: dfOut[51]:                    A         B         C  D    F2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 2013-01-05 -0.424972 0.567020 0.276232 5 4.0 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0

一个where与设置操作。

In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺少数据

pandas主要使用该值np.nan来表示缺失的数据。默认情况下,它不包含在计算中。请参阅。

重建索引允许您更改/添加/删除指定轴上的索引。这将返回数据的副本。

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E']) In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1 In [57]: df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

删除任何缺少数据的行。

In [58]: df1.dropna(how='any') Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

填写缺失的数据。

In [59]: df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0

获取值所在的布尔掩码nan

In [60]: pd.isna(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True

操作

请参阅的。

统计

操作通常排除丢失的数据。

执行描述性统计:

In [61]: df.mean()Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64

另一个轴上的操作相同:

In [62]: df.mean(1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64

使用具有不同维度且需要对齐的对象进行操作。此外,pandas会自动沿指定维度进行广播。

In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2) In [64]: s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64 In [65]: df.sub(s, axis='index') Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0 2013-01-06 NaN NaN NaN NaN NaN

申请

将函数应用于数据:

In [66]: df.apply(np.cumsum) Out[66]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min()) Out[67]: A 2.073961 B 2.671590 C 1.785291 D 0.000000 F 4.000000 dtype: float64

直方图

在查看更多信息。

In [68]: s = pd.Series(np.random.randint(0, 7, size=10)) In [69]: s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int64 In [70]: s.value_counts() Out[70]: 4 5 6 2 2 2 1 1 dtype: int64

字符串方法

Series在str 属性中配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作,如下面的代码片段所示。请注意,str中的模式匹配通常默认使用(在某些情况下总是使用它们)。在查看更多信息。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [72]: s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object

合并

CONCAT 

pandas提供了各种工具,可以轻松地将Series,DataFrame和Panel对象与各种设置逻辑组合在一起,用于索引和关联代数功能(在连接/合并类型操作的情况下)。

请参阅。

将pandas对象连接在一起:

In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495

加入

SQL样式合并。请参阅部分。

In [77]: left = pd.DataFrame({ 'key': ['foo', 'foo'], 'lval': [1, 2]}) In [78]: right = pd.DataFrame({ 'key': ['foo', 'foo'], 'rval': [4, 5]}) In [79]: left Out[79]: key lval 0 foo 1 1 foo 2 In [80]: right Out[80]: key rval 0 foo 4 1 foo 5 In [81]: pd.merge(left, right, on='key') Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5

另一个例子是:

In [82]: left = pd.DataFrame({ 'key': ['foo', 'bar'], 'lval': [1, 2]}) In [83]: right = pd.DataFrame({ 'key': ['foo', 'bar'], 'rval': [4, 5]}) In [84]: left Out[84]: key lval 0 foo 1 1 bar 2 In [85]: right Out[85]: key rval 0 foo 4 1 bar 5 In [86]: pd.merge(left, right, on='key') Out[86]: key lval rval 0 foo 1 4 1 bar 2 5

追加

将行附加到数据框。请参阅“  部分。

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D']) In [88]: df Out[88]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True) Out[90]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 8 1.453749 1.208843 -0.080952 -0.264610

分组

通过“分组依据”,我们指的是涉及以下一个或多个步骤的过程:

  • 根据某些标准将数据拆分为组
  • 功能独立应用于每个组
  • 结果组合成数据结构

请参阅。

In [91]: df = pd.DataFrame({ 'A': ['foo', 'bar', 'foo', 'bar', ....: 'foo', 'bar', 'foo', 'foo'], ....: 'B': ['one', 'one', 'two', 'three', ....: 'two', 'two', 'one', 'three'], ....: 'C': np.random.randn(8), ....: 'D': np.random.randn(8)}) ....: In [92]: df Out[92]: A B C D 0 foo one -1.202872 -0.055224 1 bar one -1.814470 2.395985 2 foo two 1.018601 1.552825 3 bar three -0.595447 0.166599 4 foo two 1.395433 0.047609 5 bar two -0.392670 -0.136473 6 foo one 0.007207 -0.561757 7 foo three 1.928123 -1.623033

分组然后将函数应用于结果组。

In [93]: df.groupby('A').sum() Out[93]: C D A bar -2.802588 2.42611 foo 3.146492 -0.63958

按多列分组形成分层索引,我们再次可以应用该sum功能。

In [94]: df.groupby(['A', 'B']).sum() Out[94]: C D A B bar one -1.814470 2.395985 three -0.595447 0.166599 two -0.392670 -0.136473 foo one -1.195665 -0.616981 three 1.928123 -1.623033 two 2.414034 1.600434

重塑

请参阅有关和 的部分。

堆栈

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ....: 'foo', 'foo', 'qux', 'qux'], ....: ['one', 'two', 'one', 'two', ....: 'one', 'two', 'one', 'two']])) ....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [98]: df2 = df[:4] In [99]: df2 Out[99]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230

该方法“压缩”DataFrame列中的级别。

In [100]: stacked = df2.stack() In [101]: stacked Out[101]: first second bar one A 0.029399 B -0.542108 two A 0.282696 B -0.087302 baz one A -1.575170 B 1.771208 two A 0.816482 B 1.100230 dtype: float64

使用“堆叠”DataFrame或Series(具有MultiIndexas index),is 的逆操作,默认情况下取消堆叠最后一级

In [102]: stacked.unstack()Out[102]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230 In [103]: stacked.unstack(1) Out[103]: second one two first bar A 0.029399 0.282696 B -0.542108 -0.087302 baz A -1.575170 0.816482 B 1.771208 1.100230 In [104]: stacked.unstack(0) Out[104]: first bar baz second one A 0.029399 -1.575170 B -0.542108 1.771208 two A 0.282696 0.816482 B -0.087302 1.100230

数据透视表

请参阅部分。

In [105]: df = pd.DataFrame({ 'A': ['one', 'one', 'two', 'three'] * 3, .....: 'B': ['A', 'B', 'C'] * 4, .....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, .....: 'D': np.random.randn(12), .....: 'E': np.random.randn(12)}) .....: In [106]: df Out[106]: A B C D E 0 one A foo 1.418757 -0.179666 1 one B foo -1.879024 1.291836 2 two C foo 0.536826 -0.009614 3 three A bar 1.006160 0.392149 4 one B bar -0.029716 0.264599 5 one C bar -1.146178 -0.057409 6 two A foo 0.100900 -1.425638 7 three B foo -1.035018 1.024098 8 one C foo 0.314665 -0.106062 9 one A bar -0.773723 1.824375 10 two B bar -1.170653 0.595974 11 three C bar 0.648740 1.167115

我们可以非常轻松地从这些数据生成数据透视表:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) Out[107]: C bar foo A B one A -0.773723 1.418757 B -0.029716 -1.879024 C -1.146178 0.314665 three A 1.006160 NaN B NaN -1.035018 C 0.648740 NaN two A NaN 0.100900 B -1.170653 NaN C NaN 0.536826

时间序列

pandas具有简单,强大且高效的功能,用于在频率转换期间执行重采样操作(例如,将第二数据转换为5分钟数据)。这在财务应用程序中非常常见,但不仅限于此。请参阅。

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S') In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [110]: ts.resample('5Min').sum() Out[110]: 2012-01-01 25083 Freq: 5T, dtype: int64

时区代表:

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') In [112]: ts = pd.Series(np.random.randn(len(rng)), rng) In [113]: ts Out[113]: 2012-03-06 0.464000 2012-03-07 0.227371 2012-03-08 -0.496922 2012-03-09 0.306389 2012-03-10 -2.290613 Freq: D, dtype: float64 In [114]: ts_utc = ts.tz_localize('UTC') In [115]: ts_utc Out[115]: 2012-03-06 00:00:00+00:00 0.464000 2012-03-07 00:00:00+00:00 0.227371 2012-03-08 00:00:00+00:00 -0.496922 2012-03-09 00:00:00+00:00 0.306389 2012-03-10 00:00:00+00:00 -2.290613 Freq: D, dtype: float64

转换为另一个时区:

In [116]: ts_utc.tz_convert('US/Eastern') Out[116]: 2012-03-05 19:00:00-05:00 0.464000 2012-03-06 19:00:00-05:00 0.227371 2012-03-07 19:00:00-05:00 -0.496922 2012-03-08 19:00:00-05:00 0.306389 2012-03-09 19:00:00-05:00 -2.290613 Freq: D, dtype: float64

在时间跨度表示之间转换:

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M') In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [119]: ts Out[119]: 2012-01-31 -1.134623 2012-02-29 -1.561819 2012-03-31 -0.260838 2012-04-30 0.281957 2012-05-31 1.523962 Freq: M, dtype: float64 In [120]: ps = ts.to_period() In [121]: ps Out[121]: 2012-01 -1.134623 2012-02 -1.561819 2012-03 -0.260838 2012-04 0.281957 2012-05 1.523962 Freq: M, dtype: float64 In [122]: ps.to_timestamp() Out[122]: 2012-01-01 -1.134623 2012-02-01 -1.561819 2012-03-01 -0.260838 2012-04-01 0.281957 2012-05-01 1.523962 Freq: MS, dtype: float64

在句点和时间戳之间进行转换可以使用一些方便的算术函数。在下面的示例中,我们将季度频率与11月结束的年度转换为季度结束后的月末的上午9点:

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') In [124]: ts = pd.Series(np.random.randn(len(prng)), prng) In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 In [126]: ts.head() Out[126]: 1990-03-01 09:00 -0.902937 1990-06-01 09:00 0.068159 1990-09-01 09:00 -0.057873 1990-12-01 09:00 -0.368204 1991-03-01 09:00 -1.144073 Freq: H, dtype: float64

分类

大熊猫可以在a中包含分类数据DataFrame。有关完整文档,请参阅 和。

In [127]: df = pd.DataFrame({ "id": [1, 2, 3, 4, 5, 6], .....: "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) .....:

将原始成绩转换为分类数据类型。

In [128]: df["grade"] = df["raw_grade"].astype("category") In [129]: df["grade"] Out[129]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e]

将类别重命名为更有意义的名称(分配到 Series.cat.categories就位!)。

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

重新排序类别并同时添加缺少的类别(默认情况下返回新方法)。Series .catSeries

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", .....: "good", "very good"]) .....: In [132]: df["grade"] Out[132]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good]

排序是按类别中的每个顺序排序,而不是词汇顺序。

In [133]: df.sort_values(by="grade") Out[133]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good

按分类列分组还显示空类别。

In [134]: df.groupby("grade").size() Out[134]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64

绘图

请参阅文档。

In [135]: ts = pd.Series(np.random.randn(1000), .....: index=pd.date_range('1/1/2000', periods=1000)) .....: In [136]: ts = ts.cumsum() In [137]: ts.plot() Out[137]: 
../_images/series_plot_basic.png

在DataFrame上,该方法可以方便地使用标签绘制所有列:

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, .....: columns=['A', 'B', 'C', 'D']) .....: In [139]: df = df.cumsum() In [140]: plt.figure() Out[140]: 
In [141]: df.plot() Out[141]:
In [142]: plt.legend(loc='best') Out[142]:
../_images/frame_plot_basic.png

获取数据进/出

CSV 

In [143]: df.to_csv('foo.csv')

In [144]: pd.read_csv('foo.csv') Out[144]: Unnamed: 0 A B C D 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 .. ... ... ... ... ... 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]

HDF5 

读写。

写入HDF5商店。

In [145]: df.to_hdf('foo.h5', 'df')

从HDF5商店阅读。

In [146]: pd.read_hdf('foo.h5', 'df') Out[146]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]

Excel中

读写。

写入excel文件。

In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

从excel文件中读取。

In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) Out[148]: Unnamed: 0 A B C D 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 .. ... ... ... ... ... 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]

陷阱

如果您尝试执行操作,您可能会看到如下异常:

>>> if pd.Series([False, True, False]): ... print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

有关说明和操作,请参阅。

见也是如此。

转载于:https://www.cnblogs.com/fpzs/p/10520857.html

你可能感兴趣的文章
ASP.NET使网页弹出窗口不再困难
查看>>
Leetcode Balanced Binary Tree
查看>>
Day1:Spring-IoC、DI
查看>>
Leetcode 92. Reverse Linked List II
查看>>
TensorFlow2-维度变换
查看>>
Redux源码分析之createStore
查看>>
POJ 2060 最小路径覆盖
查看>>
label标签作用
查看>>
Selenium2之Web自动化编写配置(Java)
查看>>
windown快速安装xgboost
查看>>
tarjan(缩点)
查看>>
Lombok插件
查看>>
Linux上安装Libssh2
查看>>
自定义EL函数
查看>>
stm32的电源
查看>>
splice的多种用法
查看>>
20162304 2017-2018-1 《程序设计与数据结构》第二周学习总结
查看>>
九.python面向对象(双下方法内置方法)
查看>>
2018-09-12
查看>>
go:channel(未完)
查看>>